Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 132(12): 123201, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38579208

RESUMO

Coulomb explosion imaging (CEI) with x-ray free electron lasers has recently been shown to be a powerful method for obtaining detailed structural information of gas-phase planar ring molecules [R. Boll et al., X-ray multiphoton-induced Coulomb explosion images complex single molecules, Nat. Phys. 18, 423 (2022).NPAHAX1745-247310.1038/s41567-022-01507-0]. In this Letter, we investigate the potential of CEI driven by a tabletop laser and extend this approach to differentiating three-dimensional structures. We study the static CEI patterns of planar and nonplanar organic molecules that resemble the structures of typical products formed in ring-opening reactions. Our results reveal that each molecule exhibits a well-localized and distinctive pattern in three-dimensional fragment-ion momentum space. We find that these patterns yield direct information about the molecular structures and can be qualitatively reproduced using a classical Coulomb explosion simulation. Our findings suggest that laser-induced CEI can serve as a robust method for differentiating molecular structures of organic ring and chain molecules. As such, it holds great promise as a method for following ultrafast structural changes, e.g., during ring-opening reactions, by tracking the motion of individual atoms in pump-probe experiments.

2.
Sci Rep ; 6: 38202, 2016 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-27910943

RESUMO

An experimental route to identify and separate geometric isomers by means of coincident Coulomb explosion imaging is presented, allowing isomer-resolved photoionization studies on isomerically mixed samples. We demonstrate the technique on cis/trans 1,2-dibromoethene (C2H2Br2). The momentum correlation between the bromine ions in a three-body fragmentation process induced by bromine 3d inner-shell photoionization is used to identify the cis and trans structures of the isomers. The experimentally determined momentum correlations and the isomer-resolved fragment-ion kinetic energies are matched closely by a classical Coulomb explosion model.

3.
Faraday Discuss ; 194: 463-478, 2016 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-27711853

RESUMO

Temporal evolution of electronic and nuclear wave packets created in strong-field excitation of the carbon dioxide molecule is studied employing momentum-resolved ion spectroscopy and channel-selective Fourier analysis. Combining the data obtained with two different pump-probe set-ups, we observed signatures of vibrational dynamics in both, ionic and neutral states of the molecule. We consider far-off-resonance two-photon Raman scattering to be the most likely mechanism of vibrational excitation in the electronic ground state of the neutral CO2. Using the measured phase relation between the time-dependent yields of different fragmentation channels, which is consistent with the proposed mechanism, we suggest an intuitive picture of the underlying vibrational dynamics. For ionic states, we found signatures of both, electronic and vibrational excitations, which involve the ground and the first excited electronic states, depending on the particular final state of the fragmentation. While our results for ionic states are consistent with the recent observations by Erattupuzha et al. [J. Chem. Phys.144, 024306 (2016)], the neutral state contribution was not observed there, which we attribute to a larger bandwidth of the 8 fs pulses we used for this experiment. In a complementary measurement employing longer, 35 fs pulses in a 30 ps delay range, we study the influence of rotational excitation on our observables, and demonstrate how the coherent electronic wave packet created in the ground electronic state of the ion completely decays within 10 ps due to the coupling to rotational motion.

4.
Opt Express ; 23(4): 4563-72, 2015 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-25836493

RESUMO

We demonstrate a chirped-pulse-amplified Ti:Sapphire laser system operating at 1 kHz, with 20 mJ pulse energy, 26 femtosecond pulse duration (0.77 terawatt), and excellent long term carrier-envelope-phase (CEP) stability. A new vibrational damping technique is implemented to significantly reduce vibrational noise on both the laser stretcher and compressor, thus enabling a single-shot CEP noise value of 250 mrad RMS over 1 hour and 300 mrad RMS over 9 hours. This is, to the best of our knowledge, the best long term CEP noise ever reported for any terawatt class laser. This laser is also used to pump a white-light-seeded optical parametric amplifier, producing 6 mJ of total energy in the signal and idler with 18 mJ of pumping energy. Due to preservation of the CEP in the white-light generated signal and passive CEP stability in the idler, this laser system promises synthesized laser pulses spanning multi-octaves of bandwidth at an unprecedented energy scale.

5.
Phys Rev Lett ; 112(17): 173602, 2014 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-24836246

RESUMO

We show, by computation and experiment, that a sequence of nonresonant and impulsive laser pulses with different ellipticities can effectively align asymmetric top molecules in three dimensions under field-free conditions. By solving the Schrödinger equation for the evolution of the rotational wave packet, we show that the 3D alignment of 3,5 difluoroiodobenzene molecules improves with each successive pulse. Experimentally, a sequence of three pulses is used to demonstrate these results, which extend the multipulse schemes used for 1D alignment to full 3D control of rotational motion.

6.
Struct Dyn ; 1(4): 044101, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26798781

RESUMO

Diffraction from laser-aligned molecules has been proposed as a method for determining 3-D molecular structures in the gas phase. However, existing structural retrieval algorithms are limited by the imperfect alignment in experiments and the rotational averaging in 1-D alignment. Here, we demonstrate a two-step reconstruction comprising a genetic algorithm that corrects for the imperfect alignment followed by an iterative phase retrieval method in cylindrical coordinates. The algorithm was tested with simulated diffraction patterns. We show that the full 3-D structure of trifluorotoluene, an asymmetric-top molecule, can be reconstructed with atomic resolution.

7.
Phys Rev Lett ; 100(9): 093006, 2008 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-18352707

RESUMO

Laser-aligned carbondisulfide (CS2) molecules are singly ionized by multiphoton absorption from intense, linearly polarized 25 fs laser pulses. The angular distribution of the photoelectrons exhibits a significant dependence on the angle between the polarizations of the aligning and ionizing laser fields. The widely used strong-field approximation predicts angular distributions in qualitative agreement with the experimental data but fails at a quantitative level.

8.
Phys Rev Lett ; 99(14): 143602, 2007 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-17930670

RESUMO

We illustrate, experimentally and theoretically, a laser-based method to control the rotations of polyatomic molecules in 3D space. A linearly polarized nanosecond pulse strongly aligns the most polarizable axis of an asymmetric top molecule along its polarization axis while an orthogonally polarized, femtosecond pulse sets the molecules into controlled rotation about the aligned axis. As a result, strong three-dimensional (3D) alignment occurs shortly after the femtosecond pulse and is repeated periodically, reflecting coherent revolution about the molecular axis. Our method opens new directions for research in orientationally confined complex molecules.

9.
J Chem Phys ; 125(19): 194309, 2006 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-17129105

RESUMO

One-dimensional alignment of molecules in the adiabatic limit, where the pulse duration greatly exceeds the molecular rotational periods, is studied experimentally. Four different asymmetric top molecules (iodobenzene, p-diiodobenzene, 3,4-dibromothiophene, and 4,4'-dibromobiphenyl), rotationally cooled through a high pressure supersonic pulsed valve, are aligned by a 9-ns-long pulse. Their orientations are measured through Coulomb explosion, induced by a 130-fs-long pulse, and by recording the direction of the recoiling ions. The paper focuses on the crucial role of the initial rotational temperature for the degree of alignment. In particular, we show that at molecular temperatures in the 1 K range very strong alignment is obtained already at intensities of a few times 10(11) W/cm2 for all four molecules. At the highest intensities (approximately 10(12) W/cm2) the molecules can tolerate without ionizing >or=0.92 in the case of iodobenzene. This is the strongest degree of alignment ever reported for any molecule.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...